Data in the enterprise today is a bi-directional, always-flowing, continuously changing business asset. Yet it remains largely segmented and disconnected. For enterprises to begin converting their data into business value this data must be connected, understood and acted upon.
Enterprise Need for Graph Databases
Enterprise data stored in graph databases with explicit nodes and edges provides competitive advantages to organizes adopting graph databases in all industries, beyond the common use case of social media companies today. With an increasing number of connected devices producing data and the need for an advancing enterprise to be data driven in their decision making, creates a deep necessity for an enterprise to connect and understand their data in a meaningful way. When data is connected and accessible across the departments of an enterprise by using a graph database like Neo4j, their teams will benefit from a more comprehensive awareness of the business and make more informed decisions to help the enterprise grow.
Today, CIOs and CTOs aren’t just after large data volume management. They also need to gain insight and direction from their current data. In this case, relationships between data points are a lot more important than the individual data points. To effectively leverage data relationships, enterprises should rely on a graph database that treats relationship information as a first-class citizen. Additionally a graph database like Neo4j does more than just store data relationships effectively, it also is flexible in expanding the relationship
No comments:
Post a Comment